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The problem of cavitation s t reamline  flow located on the l inear  base of a lamina in a gravi ty 
solution cu r ren t  is solved by the sys tems  of Ryabushinskii  and Zhukovski i -Roshko.  The 
method of f ragment-cont inuum approximation of the boundary condition at the free boundary 
was used, in which this condition is exactly satisfied at a finite number  of points. In this 
way the original problem comes down to a solution of a sys tem of nonlinear equations whose 
solvabili ty can be shown by the method o f V .  N. Monakhov [1]. The main consideration in the 
present  work was given to a numer ica l  solution of this sys tem of equatiens on a computer .  
The problem is s imi la r  to the type for la rge  Froude numbers ,  when the effect of weight on 
the flow is small ,  studied in [2-5]. In [6, 7] the flow problems were solved by the method of 
finite d i f ferences .  The approximations of the boundary condition at the free boundary used 
ea r l i e r  are  based on the use of the smal lness  of these or other  charac te r i s t i cs  of flow. 
Thus, for  example,  the l inearization of Lev i -Ch iv i t  [8] is rightly used in the assumption of 
smal lness  of the chang e in the modulus and angle of inclination of the velocity at the free 
flow line; a s t ronger  l inearizat ion is based on the requirement  of smal lness  of additional 
velocit ies caused by an obstacle in comparison w{th the velocity of the undisturbed cur ren t  
[9]. In the given work the problems studied lead to a range of cavitation and Froude num-  
bers  when the gravitat ional  force exerts  a considerable effect on the main charac te r i s t i c s  
of the flow. As an example of one of the possible applications of the calculation, the solu-  
tion of the problem of choice of the form of a body of zero buoyancy with a zone of constant 
p r e s su re  is given. 

Diagrams of the cu r ren t s  under examination are  presented in Fig.  1. For  the charac te r i s t i c  s izes of 
the given sections the flow regions have a length l of the lamina DA and an angle ~lr which it forms with 
the infinite horizontal  base CD. In Ryabushinski i ' s  sys tem the cavity is assumed to be symmet r i ca l  with 
r e spec t  to some ver t ica l  axis BC, which allows one to confine the study to one half of the flow region. 

We select  a co ,  formal  flow region in the physical plane z = x + iy on the inter ior  of the unit s emi -  
c i rc le  

- I~1<t ,  Imp>0 

so that the free surface AB corresponded to the arc  of the c i rc le  ~ = e is and the remaining part  of the 
boundary has an effective d iameter  ~ = t. In this way we locate the infinitely distant point C in accordance 
with the origin of the lamina coordinate ~, while we determine point D by means of t 1 (Fig. 2). 

The derived representat ion of the semic i rc le  in the region of the complex potential w(z) = ~(x, y) + 
ir (x, y) 

-~ = Kqo ~o~+E (1) 

where K is a real  constant,  q0 is the velocity at point A, and ~ is equal to 0 and 1 for the sys tems  of 
Ryabushinskii  and Zhukovski i -Roshko,  respect ively .  
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We look for  a comp lex  ve loc i ty  d w / d z  = q e x p  (--iO) in the 

q~ dz = e-lax 

Then to  d e t e r m i n e  the ana ly t i ca l  function M(~ ) we a r r i v e  
at the following b o u n d a r y - v a l u e  p r o b l e m :  

Re M (e ~s) = - q (s) lu-~-o, s ~ [ 0 ,  zq; I m M ( t ) = 0 ,  $ ~ [ - - l ,  i l  

Extending M (~) us ing the s y m m e t r y  p r inc ip le  to the whole  
uni t  c i r c l e  ] ~ ] -< 1 and taking into account  the pa r i t y  q(s), we 
obtain,  f r o m  the given function M(~ ) by the Schwar tz  equation,  

M ( ~ ) =  ~.~ qo i--2~coss+~'~ ds (3) 
0 

The dependence  z : z (~) is found f r o m  Eqs .  (1) and (2) 

z (~) = K e  ~'~ l (t - -  ~) (~ + ~);~ ~o.~ (3+x) [ i - ~1~ )~ e -  ~ (~) d~  (4 )  

The p r e s s u r e  p at the bounda ry  l ine of the flow is d e t e r m i n e d  f r o m  the Bernou l l i  in tegra l  

pq~ pq~ 
P = P * +  2 2 ' P* := P ~  - -  PgY 

where  l~  is the p r e s s u r e  in the und i s t u rbe d  c u r r e n t  at the  level  of point  A, q~ is the c u r r e n t  flow ve loc i ty ,  
g is the a c c e l e r a t i n g  fo rce  of g r av i ty ,  and p is the f luid dens i ty .  F r o m  h e r e  we seek  in the s tab i l i z ing  f o r c e  
of the p r e s s u r e  Po at the boundary  AB a function q(s) which  should  s a t i s fy  the condi t ion 

qo 2 -- ( t+z )  Fr ~ yo "xz-- ~/~pq .~ __q~ V g Y o /  (5) 

In this  equat ion (r is the cavi ta t ion  n u m b e r  and F r  is the F r o u d e  n u m b e r  d e t e r m i n e d  f r o m  the quanti ty 
Y0 = I sin a ~ .  We choose  the dependence  q = q(s) so  that  (5) is sa t i s f i ed  at a finite n u m b e r  of points  of the 
f r e e  bounda ry .  

Let  ~k = e i sk  (k = 1 . . . . .  m) be images  of  some  points  z k = x k + iy k of the f r ee  boundary .  In a c c o r d -  
ance  with (5) the r e l a t i ve  ve loc i ty  qk/q0 at  the points  z k is d e t e r m i n e d  only th rough  the phys ica l  p a r a m e t e r s  
~ ,  F r ,  and the dimension l k  = Yk/Y0 

q.__E~ = I i  - 2l~ ]V~ 
qo (i q- ~) Fr a- (k = t . . . .  m ~-  t )  (6) 

The r a t e s  of  flow q(s) at each  of the in t e rva l s  [Sk, Sk+l] we ass ign  a c c o r d i n g  to the f o r m u l a  

- ~  - -  C O S  S ~ C O S  8 k q (s__) qk ~,k+, ~,~+:,. ~ ~ o ~  - ~o~ .~+~ 
qo \-~-0 / \ qo ] ' ~§ -- cos s. k -- cos s~+ 1 ' ~k cos s k -- cos s~+ 1 (7) 

(% < s ~s~+ 1) 

Then  q(sk) = qk and in the  c a s e  w h e r e  qk+l < qk (k = 0 . . . . .  m),  q(s) is a mono ton ica l ly  d e c r e a s i n g  
funct ion of the p a r a m e t e r  s ~ [0, ~] .  

Subst i tut ing Eq .  (7) in (3) a f t e r  eva lua t ing  the in t eg ra l s  en t e r ing  into the given function M(~ ), we obtain 

m 

t 

- qo (1 - e " ~ )  ( ~ - -  e '~+b j 
(8) 
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The condition (51 at  points zl . . . . .  Zm, Zm+ 1 of the f ree  
boundary in accordance  with (61 lead to the m + 1 equation 

q k2 t -- 4 i ~ ds q7 = Fr~(i+~)sina~ j qosins/2(2c'~ss/2)XsinO(s)-(~ 
0 

1 -1 
r l  ( |  - t ) ( l  -~ t ) ~ . / i _  tlt\  a M (t)d{,1 X (9) 7~.s(~-7~r (t---:Ti;) e-  Ll) .J 

tl 

F r o m  the condition for  the veloci ty  of an inflowing cu r r en t  

dw I 

i t  follows that one m a y  exp res s  t 1 through the other  p a r a m e t e r s  

t~ ~ t 
(i  + ~) e ~M r176 

Having now a r b i t r a r i l y  fixed the fo rm of the p a r a m e t e r  s k (k = 
1 . . . . .  ml,  we obtain f rom Eq. (91 the s y s t e m  of m + 1 equations 
for  de terminat ion of the magnitude of qk/q0 (k = 1 . . . . .  m + 1). 

In o rde r  to solve the sy s t em of equations (91 it is n e c e s s a r y  
that  the given c h a r a c t e r i s t i c s  of flow cr and F r  sa t i s fy  the condition 

Fr~ ~ 2Yb / Yo (10/ 

which a r i s e s  during proof  of the ex is tence  of a solution of the given 
s y s t e m  by V. N. Monakhov's  method [1]. On the other  hand, the in-  
equal i ty  (10) is sa t is f ied for  those cavi tat ion flows in which the stat ic  
p r e s s u r e  at the f r ee  boundary is g r e a t e r  than the p r e s s u r e  P0 in the 
c avity 

P* = P~o -- PgY (s) ~ Po 

In accordance  with Eq.  (5) this impl ies  that  the veloci ty  at the f r ee  flow lines is g r e a t e r  than the un-  
d is turbed cu r r en t  veloci ty .  

The unknown p a r a m e t e r s  qk/q0 a r e  de te rmined  by integrat ion f rom (91. As a r e su l t  of the spec i f ics  
of the g iven  p rob lem two methods of succes s ive  approximat ions  a r e  p roposed .  

In accordance  with the f i r s t  method a solution is f i r s t  found for  the p rob lem of sa t i s fy ing the 
Bernoul l i  integral  at two points of the f r ee  boundary A and B. This solution allows one to find those values 
of the p a r a m e t e r s  s k (k = 1 . . . . .  rot, which co r re spond  to points of the f r ee  boundary obtained, with o rd i -  

(o1 + nates  Yk = kYb / (m 1), where  Yb (0) is a known ordinate  of the point B. The null approximat ion for so lu-  
tion of the or iginal  s y s t e m  (91 is de te rmined  by the equation 

_ [1 2 k 4~ ]" '  = t . . . .  

and fu r the r  approximat ions  a r e  sought by the usual i te ra t ional  s cheme .  At each  s tep  of the i tera t ional  p r o -  
ce s s  the values  of p a r a m e t e r s  s k chosen e a r l i e r  a r e  wri t ten unchanged. In the indicated method the p ro ce s s  
s tops when the Froude n u m b e r  is c lose  to the min imum F r ,  = 2Yb/~ Y0. 

In this in terval  of Froude n u m b e r s  the second method is applied, in accordance  with which additional 
i t e ra t ions  a r e  c a r r i e d  out with r e s p e c t  to F t .  The solution of s y s t e m  (91 obtained is taken as the initial ap -  
proximat ion  to the solution of the given s y s t e m  for s m a l l e r  Froude number s ,  e tc .  

If p a r a m e t e r s  qk/q0 (k = 1 . . . . .  m + 11 a re  found sat is fying the s y s t e m  of equations (9), then the 
flow is de te rmined  by Eqs .  (11, (2/, (4), and (8). The condition of s tabi l i ty  of p r e s s u r e  in this case  will be 
sa t i s f ied  at m + 2 points of the c u r r e n t  l ine AB. At the remain ing  points of this boundary the depar tu re  of 
the obse rved  p r e s s u r e  dis tr ibut ion f rom the s table  p r e s s u r e  P0 is c h a r a c t e r i z e d  by the magnitude 
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( t ) [  q2 (s)] 2 y(.~) 
Po-- Pr qo ~ .3 z Fr ~ y0 

Determining for each of these intervals [Sk, Sk+l], k = 0 . . . . .  m the points of the ex t remum �9 (s), 
one may then find a minimum value T ,  of the function �9 (s) for all the intervals  0 <- s -< ~. The required 
smal lness  of the quantity T .  is achieved at the expense of an increase  in the number of points of the free 
boundary at which the boundary condition (5) is sat isf ied.  

The resul t s  of calculations of the cavitation s t reamline  flow of a lamina by Ryabushinskii '  s sys tem 
for o- = 0.3 are  presented in F igs .  3-5.  In the solution of the problem the condition of p r e s su re  uniformity 
(5) for m = 19 is sat isf ied in all cases  with an e r r o r  % not exceeding 0.1~c. 

A compar ison  of the form of the free boundary for the flow of a weightless and of a heavy fluid with 
smal l  Froude numbers  and at equal cavitation numbers  for two values of the angle of inclination of the 
lamina a = ~,  1/6 is presented in Figs .  3 and 4, respect ively .  The broken lines in these graphs mark  the 
midsect ion of the cavity.  The fact should be kept in mind that in the central  part  of the cavity the free flow 
line is somewhat higher for a weightless than for a heavy fluid. 

The nature  of the dependence of cavity size on the Froude number  for a lamina no rma l  for an inflow- 
ing cur ren t  is i l lustrated in the graph of Fig.  5. To a considerable  degree the effect of weight (floating of 
the cavity and an increase  in its length) appears at small  Froude numbers .  It is seen f rom the graph that 
as Fr  approaches F r .  ~ 6.15 the length of the cavi ty increases  considerably,  while its width (maximum 
t r a n s v e r s e  size) is l imited below some fixed size.  

Analogous calculat ions were made for the case of cavitation s t reamline  flow of a lamina at the lower 
ha l f - su r face .  Under the same conditions the length and width of the cavity is g rea te r  at the lower half-  
surface  than at the upper .  

Of great  in teres t  is the case  where the net lifting force  produced on the body of the cavity on the par t  
of the liquid is equal to the weight of its displaced fluid. The method of formation of this type of flow was 
worked out by B. G. Novikov. 

Suppose a solution is found for the problem of cavitation s t reamline  flow of a lamina by Ryabushinski i ' s  
sys tem at the upper (lower) ha l f - sur face .  The condition • = 0 at the boundary line of the flow allows one to 
extend the function w using the s y m m e t r y  principle through the horizontal  base y = 0 into the lower (upper) 
ha l f - su r face .  Then the flow, at all sur face  under investigation, will be symmet r i ca l  and, consequently, non-  
circulat ing.  Since at the points P (x, y) and P (x, --y), lying on the free boundary and on its m i r r o r  image 
re la t ive  to the direction y = 0, the velocit ies are  equal, it follows f rom the Bernoulli  integral  that the p r e s -  
sures  at the symmet r i ca l  points differ by the amount 2pgy.  Hence the resul tant  lifting force produced on 
the par t  of the fluid on the part ial ly cavitated body will be equal to the ejecting Archimedes  force .  
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